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Overview of Lesson 

After an exploration activity and a class discussion, students will be able to determine when 

events are mutually exclusive, and then use the Addition Principle to calculate the probability of 

mutually exclusive and non-mutually exclusive events. Furthermore, the students will explore 

the probabilities of complementary events and develop the Complement Principle. 

 

GAISE Components 

This investigation follows the four components of statistical problem solving put forth in the 

Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report.  The four 

components are:  formulate a question, design and implement a plan to collect data, analyze the 

data, and interpret results in the context of the original question.   

 

This is a GAISE Level B activity. 

 

Common Core State Standards for Mathematical Practice 

MP1. Make sense of problems and persevere in solving them.  

MP3. Construct viable arguments and critique the reasoning of others. 

 

Learning Objectives Alignment with Common Core State Standards and NCTM Principles 

and Standards for School Mathematics  

 

Learning Objectives Common Core  NCTM PSSM 

Students will use simulations to 

explore empirical probabilities and 

compare them to theoretical 

probabilities. 

7.SP.C.8.C. Design and 

use a simulation to 

generate frequencies for 

compound events. 

Grades 6-8  Understand and 

apply basic concepts of 

probability: use proportionality 

and a basic understanding of 

probability to make and test 

conjectures about the results of 

experiments and simulations; 

Grades 9-12 Understand and 

apply basic concepts of 

probability: use simulations to 
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construct empirical probability 

distributions; 

Students will determine sample 

spaces using organized tables. 

7.SP.C.8.B. Represent 

sample spaces for 

compound events using 

methods such as 

organized lists, tables, 

and tree diagrams. 

Grades 6-8 Understand and 

apply basic concepts of 

probability: compute 

probabilities for simple 

compound events, using such 

methods as organized lists, tree 

diagrams, and area models. 

Students will use sample spaces to 

compute probabilities of compound 

events using unions and 

complements. 

S-CP.1. Describe events 

as subsets of a sample 

space, using 

characteristics of the 

outcomes or as unions, 

intersections, or 

complements of other 

events. 

Grades 9-12 Understand and 

apply basic concepts of 

probability: understand the 

concepts of sample space and 

probability distribution and 

construct sample spaces and 

distributions in simple cases. 

Students will discover and use the 

Addition Principle for mutually 

exclusive and non-mutually 

exclusive events:  If A and B are 

mutually exclusive, then P(A or B) 

= P(A  B) =P(A) + P(B). If A and 

B are not mutually exclusive, then 

P(A or B) = P(A  B) = P(A) + 

P(B) – P(A and B). 

S-CP.7. Apply the 

Addition Rule, P(A or 

B) = P(A) + P(B) – P(A 

and B) and interpret the 

answer in terms of the 

model. 

Grades 6-8 Understand and 

apply basic concepts of 

probability: 

understand and use appropriate 

terminology to describe 

complementary and mutually 

exclusive events; 

 

Students will discover and use the 

complement principle:  

P(A
c
) = 1 – P(A) 

 

S-CP.1. Describe events 

as subsets of a sample 

space, using 

characteristics of the 

outcomes or as unions, 

intersections, or 

complements of other 

events. 

Grades 6-8 Understand and 

apply basic concepts of 

probability: 

understand and use appropriate 

terminology to describe 

complementary and mutually 

exclusive events; 

 

Prerequisites 

Students will need to be familiar with finding the probability of a single event, A:  

P(A) = 
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑓𝑜𝑟 𝐸𝑣𝑒𝑛𝑡 𝐴

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 . Students will be familiar with the vocabulary associated 

with probability in the table below and have experience determining sample spaces and subsets. 

Students will be familiar with Venn diagrams. 

Needed Vocabulary 

Subset A set that is part of a larger set. 

Theoretical Probability 
The number of ways an event can occur divided by the 

total number of possible outcomes. 

Experimental Probability 
Is based on repeated trials of an experiment or  

(# of Successes) / (Total # of Trials). 
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Time Required  

This lesson will take place in two 50-minute lessons. 

 

Materials and Preparation Required 

 Student Worksheet 

 TI – Nspire Calculator or Core Math Tools 

 Instructions for TI-Nspire Calculator Die Simulator or Core Math Tools (see Appendix) 

 Two standard numbered cubes for each pair of students 

 

Rationale for Lesson design: 

 

Students find it difficult to find the probability of compound events (Carpenter 1981).  In a study 

of compound events where students summed up pairs of numbers, Fischbein et al. (1991) found 

that students do not possess any natural intuition when it comes to finding probabilities of 

compound events. Students may possess a tendency to globally evaluate the size of the sample 

space and its structure, and they do recognize the relationship between probability and the size of 

the corresponding sample space. From this they can develop a natural, intuitive tendency to 

evaluate the probability based on the sample space. Thus, evaluating the probability of 

compound events requires an understanding of the sample space (a pre-requisite that is revisited 

in this activity).  

 

Shaughnessy (1977) found that conventional lecture may not be the best way to overcome 

student misconceptions of probability (such as the availability and representativeness heuristics 

presented by Kahneman & Tversky (1974)). Instead, he showed that student misconceptions 

could be addressed through hands-on experiments and activities in which students discovered 

probability concepts for themselves.  He also showed that misconceptions can be discovered by 

having students compare conjectures to results obtained via experiments (1981). Furthermore, 

Shaughnessy and Zawojewski (1999) found that students need opportunities such as that 

presented in this lesson plan to work through substantive probability problems. 

 

Finally, Beitzel, et al. (2011) found that students using only concrete representations such as 

Venn Diagrams to solve probability problems involving non-mutually exclusive events were out-

performed by students instructed in using only the equation for the addition rule. Students that 

had to construct the Venn diagram to solve probability problems reported a higher cognitive 

demand than those using just the abstract representation of the formula. Thus, it is critical that 

students develop an understanding of the addition rules in order to be able to use them without 

constructing a Venn diagram. 

 

The main author was unable to find any research on what students understand about the 

complement rule for probability nor how to teach this concept. As a result, we followed the idea 

of exploring Venn diagrams and discovering the Complement Principle by looking at subspaces.    
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Odd or Even? The Addition and Complement Principles of Probability 

Teacher’s Lesson Plan 
 

 

Describe the Context and Formulate a Question  

 

Two people are playing a game of “Odd or Even” with two standard number cubes. (Each 

student should have the Student Handout in the Appendix). A trial occurs when two cubes are 

rolled once and points are assigned. The game consists of many trials, the number of which are 

decided upon by Player A and B before the first trial. Consider the following rules. 

 

Odd or Even Rules: 

Roll two standard number cubes.  

If the sum is 6 or an odd number, then Player A scores a point. 

If the sum is 6 or an even number, then Player B scores a point. 

Repeat the above steps an agreed number of times. 

Whomever has the most points at the end of the game wins. 

 

Ask students: “Suppose you play a game consisting of many trials.  Predict which partner is 

likely to score more points in “Odd or Even”. Justify your reasoning. 

 

Students will begin by making a prediction for the game “Odd or Even”. As students often 

possess misconceptions about probability, elicit responses to question 1 on the Student Handout 

to determine whether misconceptions about sample size exist, as developing intuition about 

events relative to sample size is often a misconception (Fischbein 1991). A common 

misconception is that a student is either Player A or Player B. Be sure to address this with 

students by emphasizing that we are analyzing the game, not playing it as the two players. 

 

Collect Data 
 

Next, show students two six-sided number cubes and ask how they might determine who would 

win in a game of 1000 trials without actually playing 1000 times. To help address students’ 

misapplied confidence in small numbers, we will first look at samples of size 30 (Hope 1983).  

Before having students play the game (neither partner is Player A nor B), ask them what 

assumptions we are making about the game. Students should determine that we are assuming the 

number cubes are fair and that each side has the same probability of landing face up (we have a 

uniform probability distribution of the sides of the cube). 

 

After students complete a game of 30 trials, bring the class together and ask what they found out. 

Begin to discuss whether 30 trials is enough. Did everyone get the same probabilities? Which 

ones are more accurate? The instructor may wish to pool the class data and ask whether students 

feel more confident about those results. Be sure to talk about underlying assumptions such as 

whether everyone tossed the cubes the same way. With the pooled data, students may still 

believe that we have enough trials to be fairly certain. How certain do we want to be? What if we 

wanted to predict the winner in a game consisting of 1000 trails? How could we do that without 
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actually playing 1000 times? Lead students to discover that it would be great if we could 

automate the process and use technology to perform many trials. 

 

Question 4. Students will next simulate 1000 trials of the game “Odd or Even” using the TI-

Nspire calculator or Math Core Tools (see Appendix A for directions on how to use both tools). 

After the simulation, have students compare their results with their original prediction (question 

1) and their sample of size 30 (question 2). Give students the opportunity to change their original 

conjecture with an explanation. The process of moving from 30 trials to a class pooled data set to 

a simulation of 1000 trials, will help students combat the misconception of small numbers. 

 

By the time students get to question 5 on the Student Handout, most will be skeptical that the 

game is fair. What does it mean to be fair? Which player would you rather be? 

 

Before moving on, discuss/define the mathematical term “mutually exclusive” (two events are 

mutually exclusive if they have no outcomes in common). To help solidify the definition, ask 

students to describe some events in their everyday life that are mutually exclusive.   

 

In the first part of the Explore section, have the students look at the three Venn diagrams. Before 

moving on, ask why two are labeled “not mutually exclusive” and one is labeled “mutually 

exclusive”. Then, discuss their similarities and differences. 

  

Analyze Data   
 

The students will then compute the probabilities of two events that are mutually exclusive using 

simple probability and sample spaces. Next, students are asked to think about the relationships 

between P(A), P(B) and P(A or B).  Students should discover that the sum of two probabilities is 

the third, and conclude that when A and B are mutually exclusive events, P(A or B) = P(A) + 

P(B).  

 

Upon completing questions 7 – 11 on the Student Handout, make sure the students discuss their 

solutions first with their partner and then share out as a class. When sharing out as a class, define 

the addition rule of mutually exclusive events mathematically and write the definition in words 

the students understand. Sharing first with each other in small groups (in their native language, if 

necessary), is most important for the ELL students. 

 

For Questions 12 – 17, students will find the probability of two events that are not mutually 

exclusive by using simple probability. They will then compare how they computed the 

probability of Player A winning to how they computed the probability of Player B winning. As 

part of this process, students will compare and contrast the results of mutually exclusive and not 

mutually exclusive events; they will conclude that if events are not mutually exclusive, then P(A 

or B) = P(A ∪ B) = P(A) + P(B) – P(A and B). After completing question 12, have students share 

with their partner and then as a class. Upon completing questions 13 – 17, bring the class 

together to discuss what they discovered. When they share out as a class, define the addition rule 

for the probability of two non-mutually exclusive events mathematically and write it in words the 

students understand. Sharing first with each other in small groups (in their native language, if 

necessary), is most important for the ELL students. 
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Question 18 asks students to return to the original question – who would win in a game 

consisting of many trials? Bring students together as a class and have them compare the three 

probabilities that they have found: the one using dice and 30 trials of the game, the simulation of 

1000 trials, and the theoretical probability. They should conclude that the simulation of 1000 

trials of the game gave the most accurate experimental probability. 

 

Once the addition rules are derived, the students will find the probability of the complement of 

Player A winning.  A common misconception is that the complement of Player A winning must 

be player B winning.  The way the game is designed, neither player may win: they could tie. 

They will then compute 1 – P(A) and compare this result with the one found using simple 

probability. The students will then define the probability of the complement of an event A: P(A
c
) 

= 1 – P(A). Upon completing question 19 again have students discuss at their tables and share 

out as a class. Both ELL students and non- ELL students benefit by bouncing ideas off each 

other, and the discussion helps identify misconceptions. The instructor may choose to address 

misconceptions at the table-level or, if a misconception is prevalent throughout, address it as a 

class. Sometimes even if the misconception is not prevalent, it should be used for good 

classroom discussion to address non-examples. 

 

Interpret Results 
 

Key points of the exploration that need to be discussed as a class are questions 11g, 17f, and 19g 

on the Student Handout. Following these key questions, the students will write in words and 

corresponding mathematical notation the two versions of the addition rule for probability and 

define the complement in the boxed areas. For ELL students, have them write in their native 

language or words that make sense to them along with the mathematical notation. It is vital that 

they understand the definitions for the Addition Principle for mutually exclusive and non-

mutually exclusive events and the Complement Principle. 

 

Question 11g. If two events, M and N, are mutually exclusive, then P(M or N) = P(M) + 

P(N); P(M ∪ N) = P(M) + P(N); Since M and N have nothing in common, or do not 

intersect, the events are mutually exclusive so you add the two probabilities together. 

“OR” is used to show that a sum may be in either A or B or in both, and is defined as the 

union that is notated by “∪” symbol. 

 

Question 17f. If two events, H and I, are non-mutually exclusive, then P(H or I) = P(H) + 

P(I) – P(H and I); P(H ∪ I) = P(H) + P(I) – P(H ∩ I); Since H and I overlap they are non-

mutually exclusive, and therefore we add the probabilities and subtract the probability of 

what they have in common (or the overlapping part) because it is included twice. “AND” 

is used to show the intersection of the two sets and notated by “∩” symbol. 

 

Question 19g. If Q and R are complementary events, then P(R) = P(Q
c
) = 1 – P(Q); Find 

the probability of the complement of Q, which is the probability of not Q and is written as 

P(Q
c
). Since 1 is the total probability of an event you can subtract a part, P(Q), to obtain 

the remaining probability, P(Q
c
).  

 

The final two questions ask students to reflect on the definitions (mutually exclusive, 

complementary) in relation to the Player A and Player B winning. They are not mutually 
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exclusive and they are not complementary. Students should be given time to think about these 

answers before developing their own game. A common misconception will be that either Player 

A or Player B wins, however, because they both score a point when the sum is 6, the game could 

end in a tie if an even number of rounds is played. In this case, neither player has more points 

than the other and neither wins.  

 

 

Suggested Assessment  
 

1. A single letter is chosen at random from the word MATHEMATICALLY. Let A = “the letter 

E” and B = “vowel”. Are events A and B mutually exclusive? Explain, why or why not. 

 

2. A standard number cube is rolled. Let event E be “an even number is rolled” and event O = 

“an odd number is rolled”. Are events A and B complementary? Why or Why not? 

 

3. If the probability of Jack winning the Dinosaur Explosion game is 
1

3
 and the probability of 

Leo winning is 
1

5
, what is the probability that either Jack or Leo will win the game? Support 

your answer with work. 

 

4. Solve using two different methods. Make sure you show your work and explain the 

differences between your methods. 

The integers 1, 2, 3, …, 20 are written on slips of paper and placed in a bowl and thoroughly 

mixed. A slip is drawn from the bowl at random. What is the probability that the number on 

the slip is either prime or divisible by 3? 

Method 1:  

   

Method 2: 

 
Explanation of the differences of method 1 and method 2: 

 

5. Suppose F is the event that you draw a four and C is the event that you draw a club. Suppose 

that, P(F) = 
4

9
, P(C) = 

4

9
, and P(F ∩ C) = 

1

3
. Find probability that you draw a four or a club. 

 

6. On April 15,1912, the Titanic struck an iceberg and rapidly sank with only 710 of her 2,204 

passengers and crew surviving.  Data on survival of passengers (http://www.encyclopedia-

titanica.org/titanic-statistics.html) are summarized in the table below.   

 

 Survived Did not survive Total 

1st Class 

Passengers 
201 123 324 

2nd Class 

Passengers 
118 166 284 

http://www.amstat.org/education/stew/
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3rd Class 

Passengers 
181 528 709 

Total Passengers 500 817 1317 

 

a. What is the probability that someone on the Titanic was a 2
nd

 or a 3
rd

 class passenger? 

 

b. What is the probability that someone on the Titanic was a 2
nd

 class passenger or 

survived? 

 

 

Assessment Answers: 

1. No, A and B are not mutually exclusive because E is a vowel and therefore A and B intersect. 

2. Yes, E and O are complementary because their union is the whole sample space and the 

events are disjoint. P(S) = 1, and 1 = P(E) + P(O) 

3. 
1

3
+  

1

5
=  

8

15
  

4. Method 1: Counting principle or simple probability 

List all the numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20  

Count the numbers that are either prime or divisible by 3 without duplication 14/20 

= 7/10 

Method 2: Addition Rule for non-mutually exclusive events. 

P( Prime or Divisible by 3)  

P(Prime) + P(Divisible by 3) – P(Prime ∩ Divisible by 3) = 9/20+ 6/20 -1/20 = 14/20 = 

7/10  

Method 3: Complements 

You count the evens and take out the number 2 because it is a prime and then take out the 

numbers that are divisible by 3. That leaves you with probability of 6/20. Therefore  

1 - 6/20 = 14/20 = 7/10 

Possible explanation of the differences of methods: 

The first method used the counting principle and the second method used the addition 

principle. With the counting principle, one counts the numbers in the set and with the 

addition principle, one finds the probability of a prime, the probability of a number 

divisible by three and the probability that a number is divisible by three and a prime. The 

addition rule is used to calculate the probability. 

5. 
4

9
+

4

9
−

1

3
=

5

9
  

6. a. P(2
nd

 class or 3
rd

 class) = P(2
nd

 class) + P(3
rd

 class) = 
284

1317
+ 

709

1317
=  

993

1317
=  

331

439
 

b. P(2
nd

 class or Survived) = P(2
nd

 class) + P(Survived) – P(2
nd

 class and survived) = 
284

1317
+  

500

1317
−  

166

1317
=  

618

1317
=  

206

439
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Possible Differentiation 
 

To extend this activity, consider looking at probabilities involving variables and geometric 

probabilities as in the following questions. 

 

Extension    
1. Suppose H is the event that you buy a two-story house and T is the event tan houses. 

a. Suppose P(H) = 
2

3
 , P(T) = 

3

5
 , and P(H U T) = 

13

15
 . Find the probability that you buy a 

tan two-story house. 

 

b. Suppose P(H) = 
1

2
 , P(H ∩ T) = 

1

4
 , and P(H U T) = 

2

3
 . Find the probability that the 

house is tan. 

 

c. Suppose P(H), P(T), and P(H ∩ T) can be represented by the following expressions 

respectively 
2

𝑥
 , 

3

2𝑥
 , and 

1

𝑥
 . Find the probability that you buy a house that is two-story 

or tan. 

 

2. What is the probability of scoring exactly 30 points with one dart thrown? The bonus region 

triples your score and each ring is 4 in. thick. The central angle for the bonus sector is 30⁰.  

 

  

 

 

Extension Solutions 

1.   

a. P(H ∩ T) = 
2

5
 

b. P(T) = 
5

12
 

c. P(𝐻 ⋃ 𝑇) = 
5

2𝑥
 

 

2.  Let A = “Area of 30 without Bonus”  

Area of 30 without Bonus = 
300

360
(42𝜋) =  

40

3
𝜋 

P(A) = 

40

3
𝜋

256𝜋
=  

5

96
 = .05208 

 

Let B = “Area of 10 with Bonus” 

Area of 10 with Bonus = 
60

360
(122𝜋 − 82𝜋) =  

8

3
𝜋 

P(B) = 

8

3
𝜋

256 𝜋
=  

1

96
 = .0104 

 

P(A or B) = P(A) + P(B) = 
6

96
 or .0625 
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Odd or Even? The Addition and Complement Principles of Probability 

Student Handouts 
 

Launch:  

Work with a partner to analyze the game “Odd or Even”. A trial occurs when two cubes are 

rolled once and points are assigned. The game consists of many trials, the number of which are 

decided upon by Player A and B before the first trial. 

 

Odd or Even Rules: 

Roll two standard number cubes.  

If the sum is 6 or an odd number, then Player A scores a point. 

If the sum is 6 or an even number, then Player B scores a point. 

Repeat the above steps an agreed number of times. 

Whomever has the most points at the end of the game wins. 

 

1. Suppose you play a game with a certain number of trials.  Predict which partner is likely 

to score more points in “Odd or Even”. Justify your reasoning. 

 

 

 

2. Next, ask your teacher for two standard numbered cubes. Then, play the game with 30 

trials, keeping track of scores by tallying points: 

 

Player A’s points:    Probability that Player A wins: 

 

Player B’s points:     Probability that Player B wins: 

 

  

3. Looking at your results, which player was more likely to win?  

 

How do your experimental results compare with your prediction in question 1? Are your 

results surprising? In what way(s)?  

 

 

4. Using the technology specified by your teacher, simulate tossing a pair of numbered 

cubes 1000 times. How many points did each player win?  

 

Player A’s points:     Probability that Player A wins: 

 

Player B’s points:     Probability that Player B wins: 

 

How do your results using technology to simulate playing the game compare with the 

prediction you made in question 1 and your experimental result in question 3? 
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5. Do you think the game is fair? Why or why not?  

 

 

6. We want to be sure of our answer to the previous question. What ideas to you have to 

find the exact/theoretical probability of each player winning? 

 

 

 

 

Explore:  

On Your Own... 

 

 

 

 

 

 

Diagram X      Diagram Y     Diagram Z  

 

7. Consider the Venn Diagrams above where one circle in each diagram represents S = “the 

sum is 6” and the other represents O = “the sum is odd”. 

a. The Venn diagram that represents Player A’s events is diagram ______ . 

Explain why.  

 

 

 

b. How is the probability of Player A winning related to the diagram you chose in 

the previous part?  

 

 

 

With your Partner… 

8. The table to the right represents the sample space for the 

sum of the values when two cubes are tossed.  Complete 

the table. 

 

 

9. Using the table to the right, shade the cells that represent 

Player A winning the game. 

 

 

10. What is the probability that Player A wins the game? That is, what is the probability of 

rolling a sum of 6 or a sum that is odd? 

 

P(Player A wins) = P(S or O) = 

 

  

+ 1 2 3 4 5 6 

1       

2       

3       

4       

5       

6       

Not Mutually Exclusive 

Events 

Mutually Exclusive Events 

 

Not Mutually Exclusive 

Events 
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11. For each part, shade the corresponding event and use it to calculate the probability. 

a. Shade event “S”, and find P(S). b. Shade event “O”, and find P(O). 

 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

 

c. Compare the diagrams for “S” and “O” in the previous question with the diagram for 

“S or O” in question 9.  What, if anything do you notice? 

 

 

 

 

d. How do you think P(S), P(O), and P(S or O) are related? Explain your answer. 

 

 

 

 

e. Test your conjecture to part d. by computing probabilities. Were you correct or do you 

want to change your conjecture? 

 

 

 

 

f. Why do you think the relationship you found in part e. is true? Think about the event 

and sample spaces and the Venn diagram. 

 

 

 

 

g. Summarize  

 If two events, M and N, are _______________ _______________________, 

 then P(M or N) = P(𝑴 ⋃ 𝑵) = _____________________________. 
 

 

  

If two events, M and N, are ______________________________, then  

P(M or N) =  

Memorize 
Me! 
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On Your Own... 

12. Now suppose we re-label the circles in the Venn Diagrams above so that one circle in 

each diagram represents S = “the sum is 6” and the other represents E = “the sum is 

even”. 

a. The Venn diagram before question 7 that represents Player B’s events is diagram 

______. Explain why. 

 

 

 

 b. Redraw the Venn diagram from the previous part. Shade and describe in your own 

words the region where S and E overlap.  

 

 

 

 

 

c. How is the probability of Player B winning related to the diagram you chose in the 

previous part?  

 

 

 

With your Partner... 

13. Using the table to the right, shade the cells that represent 

Player B winning the game. 

 

 

14. What is the probability that Player B wins? That is, calculate 

the probability of rolling a sum of 6 or a sum that is even. 

 

P(S or E) = 

 

 

15. Create two sample spaces and represent event “S” and event “E”.  

 

 

 

 

 

 

 

 

 

16. What are P(S) and P(E)? 

 

P(S) =      P(E) =  

 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 
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17. Compare the diagrams of your sample spaces for the events “S” and “E” with that of “S 

or E”. 

a. What do you notice?  

 

 

 

 

b. Explain your discovery using the Venn diagram from question 12. 

 

 

 

 

c. How do you think P(S), P(E), and P(S or E) are related? Explain your answer. 

 

 

 

 

d. How is your answer in part c related to your answer from question 11d? 

 

 

 

 

e. What is the probability that Player B wins? 

  

P(Player B wins) = P(S or E) =  

 

 

f. Summarize 

 If two events, H and I, are _______ ______________ ____________________, 

 then P(H or I) = P(𝑯 ⋃ 𝑰) = _____________________. 
 

 

 

18. We found the theoretical probability that Player A wins one point and the probability that 

Player B wins one point. Return to the original question: if you play a game with many 

trials, who is likely to win? Explain your answer. 

 

 

  

If two events, H and I, are ______________________________________  

then P(H or I) = 

Memorize 
Me! 
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On Your Own... 

19. a. Shade the area of the Venn diagram to the right that 

represents the probability of not getting either a sum 

of 6 or an odd sum. 

 

 

 

b. Using the sample space table to the right, calculate 

the probability of getting a sum that is neither 6 nor odd 

using simple probability. 

  

 P([𝑆 ⋃ O]
c
) = 

 

With your Partner... 

c. Compare your sample space diagram for 𝑆 ⋃ O (question 

9) with the sample space diagram for  [𝑆 ⋃ O]
c
 (question 19a). Compare also the Venn 

diagram for 𝑆 ⋃ O (question 7) with the Venn diagram for  [𝑆 ⋃ O]
c
 (question 19b).  

What do you notice?  

 

 

d. How do you think the probabilities P(𝑆 ⋃ O) and P([𝑆 ⋃ O]
c
) are related?  Explain your 

answer. 

 

 

f. Use P(𝑆 ⋃ O) to compute P([𝑆 ⋃ O]
c
). 

 

 

g. Summarize  

Two events A and B are called complementary if A and B are mutually exclusive events 

whose union is the universal space. Symbolically, we write A = B
c
 and B = A

c
.  

If S and T are complementary events, then P(T) = P(S
c
) = __________. 

 

 

20. Are the events of Player A winning a point and Player B winning a point mutually 

exclusive? Complementary? Support your answers using theoretical probabilities 

computed in previous questions. 

Close: 

21. Now it’s your turn. Design a game using two six-sided number cubes so that each of 

Player A and Player B can win in one of two ways, but the two players do not have the 

same probability of winning. Calculate the probability that each player wins. 

 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

 If Q and R are ___________________________________, 

 then P(R) = P(Qc) = 

Mutually Exclusive 

sum 

of 6 
odd sum 

 

Memorize 
Me! 

http://www.amstat.org/education/stew/


_____________________________________________________________________________________________ 

STatistics Education Web: Online Journal of K-12 Statistics Lesson Plans 17 

http://www.amstat.org/education/stew/ 

Contact Author for permission to use materials from this STEW lesson in a publication 

 

Student Handout Solutions for Teacher 

 
1. Partner A because the two events have nothing in common. 

2. Answers will vary. 

3. Answers will vary, but it is likely that most pairs of students determined that Player A won. 

4. Answers will vary, but it is likely that with 1000 trials most pairs of students determine that 

Player A won. 

5. Not fair because the outcomes will not be the same for partners A and B. A will have more 

because 6 is never an odd number and therefore the two conditions never intersect. Player B 

will have less because 6 is included as an even number. 

6. Answers will vary. 

7.   

a. Diagram Y, because 6 will never be an odd number so the two events cannot overlap. 

b. Because S and O do not intersect I can conclude that there should be more outcomes 

because of no overlap and that is why partner A should win. Partner A has a greater 

probability than Partner B. 

8. Table shown to the right. 

9. Table shown to the right. 

10. 
23

36
 

 

11.   
a.   

  

  

  

P(S) =  
5

36
   

 

 

b.  

  

  

 

P(O) =  
18

36
 

 

 

 

 

c. The diagrams for “S” and “O” combine to give the diagram for “S or O” 

d. It appears that P(S) + P(O) = P(S or O) because the event spaces  for S and O don’t 

have any overlap. 

e. P(S) + P(O) = 
5

36
+  

18

36
=  

23

36
 while P(S or O) = 

23

36
. They are equal, so our conjecture 

was correct. 

f. Because the event spaces do not intersect, their circles do not intersect in the Venn 

diagrams or are mutually exclusive.  

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 + 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 
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g. If two events, M and N, are mutually exclusive, then P(M or N) = P(M U N) = P(M) 

+ P(N). 

 

12.  
a. Diagram Z, because the number 6 is also an even number, therefore you know that it 

is contained in both sets S and E causing the overlapping of sets 

b. Since the sum of 6 is a sum that is an even number, then the event S is a subset of the 

event E, and therefore lies entirely within set E.  

c. Because of the intersection of S and E you cannot take the 6 into account twice. 

Therefore B’s probability of winning should be smaller. 

13.   

  

  

  

  

  

  

  

 

14. P(S or E) =  
 18

36
 

15.   
  

  

  

 Event E,  

  

  

  

  

  

 Event S 

  

  

  

  

 

 

16.  P(E) = 
 18

36
 and P(S) = 

 5

36
 

17.    
a. The two events overlap, in fact, event S is a subset of event E. 

b. We chose Diagram Z because S is a subset of E.  

c. We can’t simply add the probabilities because we would be adding P(S) twice, once 

when we add P(E) and once when we add P(S). 

d. We need to subtract the intersection when events are not mutually exclusive:  P(E) + 

P(S) – P(S and E) = P(E) since P(S and E) = P(S)  

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 
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e. P(Player B wins) = P(S or E) = 
 18

36
 

f. If two events, H and I, are not mutually exclusive, then P(H or I) = P(H U I) = P(H) + 

P(I) – P(H ∩ I). 

18. In 100 games, Player A is expected to win 100 ∗ 
23

36
= 63.9 points while Player B is 

expected to win 100 ∗  
18

36
= 50 points. Thus, Player A is more likely to win. 

19.   
a. The region outside both circles is shaded. 

b.  P([𝑆 ⋃ O]
c
) = 

13

36
 

c. In both the sample space diagram and the Venn diagram, 

the events have no overlap and they make up the whole 

space. 

d. The probabilities add to one. 

e.  
23

36
 

f.  1 - 
23

36
=  

36

36
−  

23

36
=

13

36
 

g. If Q and R are complementary events, then P(R) = 1 – P(Q). 

20. The events that Player A wins and that Player B wins are not mutually exclusive (they 

overlap because both can win a point if the sum is 6) and they are not complementary 

because they are not mutually exclusive (though their union is the sample space). 

21. Answers will vary. 

 

 

 

  

+ 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 
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Appendix  
 

TI-Nspire and TI-Nspire CAS Simulation Directions 
 

Directions can also be found at 

http://math.kendallhunt.com/documents/daa2/cntns/daa2cntns_014_10.pdf 

 

To simulate tossing two standard numbered cubes, we need to assume that each number has an 

equally likely chance of occurring. In other words, we need a uniform distribution of the 

numbers 1 through 6 so that we can use the random number generator in the List & Spreadsheet 

application.  

 

1. Open the List & Spreadsheet app. 

2. We have two numbered cubes and want to find their sum, so label columns A, B, and C 

“cube1”, “cube2”, “sumcube”, respectively. 

3. To simulate rolling a six-sided cube 1000 times, type “randint(1, 6, 1000)” into the 

formula cell of columns “cube1” and “cube2”. 

4. To compute the sum of the two cubes, in the formula cell for “sumcube” type “cube1 + 

cube2”. Then, press “Enter” to populate the column. 

5. To see the distribution of the sums, you can create a histogram: from the Home screen, go 

to Data & Statistics.   

6. Add “sumcube” to the x-axis. Select “Menu” and “PlotType | Histogram” 

7. From the Histogram you can tally the number of outcomes that make up Player A’s and 

B’s outcome. 

 

 

Core Math Tools Simulation Instructions: 

Another way of making a simulation if you didn’t have access to the TI-Nspire calculator is 

using the program Core Math Tools. You can download it from the website 

http://www.nctm.org/coremathtools/ by clicking on “downloadable suite”.  

 

Once Core Math Tools is downloaded, open it and start a Simulation under Statistics & 

Probability.  

1. From the column on the left, click the six-sided dice twice so we have two dice to work 

with.  

2. Next highlight both die (on a PC this is done holding the “Control” key, while on a Mac 

you hold the “Command” key.)  

3. Then, from the Build tab, click “Add” to simulate rolling two six-sided dice and adding 

the two together to show the sum.  

4. We then want to see the number of times we roll the sum of an even number or a sum of 

6. To simulate this, highlight the simulation, and click “Count # of” from the “Build” tab. 

A box will pop up with numbers 2-12. To count the number of even sums, you need to 

click on all the even numbers. First double click on the 2. Then, if you have a Mac, use 

“Command” while choosing “4”. Continue doing that until you have highlighted all of 

the even numbers. On a PC, do the same thing but use “Control” instead of “Command”.  
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5. Then, to find the number of times we roll the sum of an odd number or a sum of 6, we 

repeat the process above (begin with step #1) selecting 3, 5, 6, 7, 9, 11.  

6. Finally, conduct 1000 Runs via the menu at the top. The simulation will show a “1” if the 

sum was even or 6 (odd or 6) and a “0” if not.  

7. To find the total count of sums for each simulation, select “Graph” and “Labels Bars” in 

the “View” drop-down menu.   
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